Urso does not benefit PSC Marion Peters UCSF 2011 # Why treat PSC? - Chronic cholestatic progressive liver disease - Associated with - Inflammation and fibrosis of bile ducts - Biliary obstruction - Stone formation - Infection - Cholangiocarcinoma #### Effects of Urso - 1970's Gall stone dissolution - Solubilizes cholesterol from GS surface - Converts supersaturated bile to unsaturated bile - Enhances transport capacity of bile for cholesterol - Promotes liquid crystal metaphase of phospholipids and cholesterol - Aids dissolution even if bile is supersaturated - ?decrease biliary pain if mild?? #### Effects of Urso - UDCA in PBC beneficial - stimulates biliary secretion of bile acids - Stimulates transporter proteins (post transl) - In cholestatic liver diseases hydrophobic bile acids accumulate in hepatocytes - Cell damage, apoptosis and necrosis - Urso cytoprotective (hydrophilic) - ? anti-apoptotic in vitro studies - ? Immunomodulatory activate GR, anti IFN-γ - ? Chemopreventative colon cancer # Effects of Urso - Chemopreventative colon cancer - Decreased prevalence of neoplasia after median 50 and 42 months urso - 39% reduction in recurrence of adenomas with high-grade dysplasia - No difference in total adenoma recurrence - How long??/ # Entero-hepatic circulation 1º bile acids CDCA cholic acid 2º bile acids DCA LCA Urso 3% # **URSODIOL ENRICHMENT** Lindor; Combes ## Trials of urso for PSC | Inconclusive benefit | YES | NO | | |-------------------------------|-------|------|--| | Symptoms | 2/9 | 7/9 | | | • LFT's | 11/12 | 1/12 | | | Histology | 3/7 | 4/7 | | | Outcome | 2/5 | 3/5 | | Doses 10-30 mg/Kg | Table 1 Trials of UDCA in PSC | | | | | | |-------------------------------------|----------------------------------|-----------------|--------------|-------------------|--| | Reference | Type of study | No. of patients | Dose of UDCA | Duration (months) | Outcomes | | Chazouillères et al. ⁴⁴ | Prospective | 15 | 750-1250 mg | 6 | Improved liver function
and symptoms | | O'Brien et al. ⁴⁵ | Open-label | 12 | 10 mg/kg | 30 | Improved liver function and symptoms | | Beuers et al. ⁴³ | Double-blind, placebo-controlled | 6 | 13-15 mg/kg | 12 | Improved liver function
and histology.
No effect on symptoms | | Lo et al. ¹⁷⁵ | Double-blind placebo controlled | 23 | 10 mg/kg | 24 | Improved liver function. No effect on symptoms or histology | | Stiehl <i>et al.</i> ¹⁷⁶ | Double-blind, placebo-controlled | 20 | 750 mg | 12-48 | Improved liver function and histology. No effect on symptoms | | De Maria et al. ¹⁷⁷ | Double-blind placebo controlled | 59 | 600 mg | 24 | No improvement in liver function | | Lindor ⁴⁷ | Double-blind, placebo-controlled | 105 | 13-15 mg/kg | 34 | Improved liver function.
No effect on histology
and symptoms | | Van Hoogstraten
et al. ¹⁷⁸ | Double-blind | 48 | 10 mg/kg | 24 | Improved liver function.
No effect on symptoms | |--|--|-----|----------------------------------|-----|---| | Mitchell et al. ⁴⁹ | Double-blind, placebo-controlled | 26 | 20-25 mg/kg | 24 | Improved liver function,
histology and
cholangiography.
No effect on symptoms.
No survival benefit | | Harnois et al. ¹⁷⁹ | Open label | 30 | 25-30 mg/kg | 12 | Improved liver function
and survival compared
with Mayo risk score | | Okolicsanyi et al. ¹⁸⁰ | Open-label, placebo-controlled | 86 | 8-13 mg/kg | 120 | Improved liver function
and symptoms.
No effect on histology | | Olsson et al. ⁵⁰ | Multi-centre randomised
Double-blind,
placebo-controlled | 219 | 17-23 mg/kg | 60 | Improved liver function. Nonsignificant trend towards increased survival. No effect on symptoms | | Cullen et al. ⁵¹ | Pilot dose range study | 30 | 10 mg/kg
20 mg/kg
30 mg/kg | 24 | Improved projected survival with low and standard dose. Significantly improved projected survival with high dose | | Lindor et al. ⁴⁸ | Multi-centre Double-blind,
placebo-controlled | 150 | 28-30 mg/kg | 60 | Improved liver function. No improvement in symptoms or histology. Discontinued early (6 years): significantly risk of death, need for liver transplant or development of varicies | # High dose Urso for PBC - UDCA (n=76) placebo (n=74) groups: randomized, double-blind controlled trial of high-dose UDCA (28–30 mg/kg/day) for 5 y - Similar in gender, age, duration of disease, inflammation, liver histology and Mayo risk score. - DSMB stopped at 75% enrollment (31 (21%) reached 5 y) - During therapy, AST and AP levels decreased more in the UDCA than the placebo group (p<0.01) - Not associated with decreased endpoints: development of cirrhosis, varices, cholangiocarcinoma, liver transplantation or death - 30 patients in the UDCA group (39%) versus 19 patients in the placebo group (26%) had reached one of the pre-established clinical endpoints. - The risk of a primary endpoint was 2.3 times greater for patients on UDCA than for those on placebo (p<0.01) - Risk 2.1 times greater for death, transplantation, or minimal listing criteria (p=0.038). - Serious adverse events were more common in the UDCA than placebo group (63% vs 37%: p<0.01). #### Model of All Primary Endpoints Adjusted for Mayo Risk Score, Presence of Varices, and Stage #### Conclusion - Long-term high-dose UDCA therapy is associated with - improvement in serum liver tests in PSC - but does not improve survival - is associated with higher rates of serious adverse events. - "Any dose" urso improves LFT's but little else - No effect on symptoms, histology or survival