

Urso does not benefit PSC

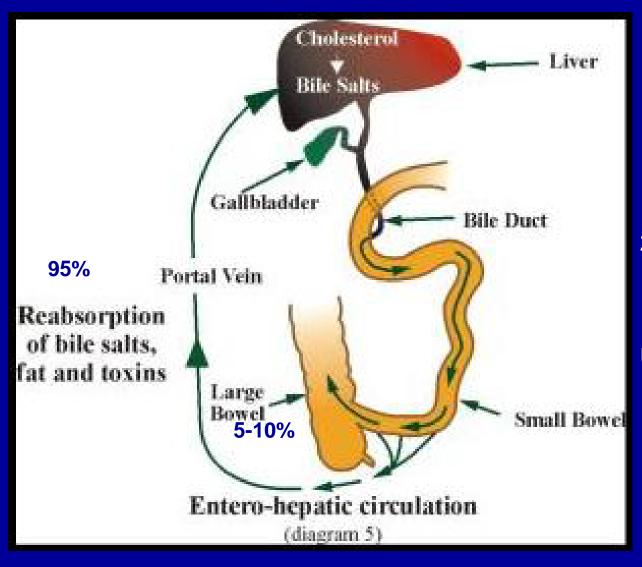
Marion Peters
UCSF 2011

Why treat PSC?

- Chronic cholestatic progressive liver disease
- Associated with
 - Inflammation and fibrosis of bile ducts
 - Biliary obstruction
 - Stone formation
 - Infection
 - Cholangiocarcinoma

Effects of Urso

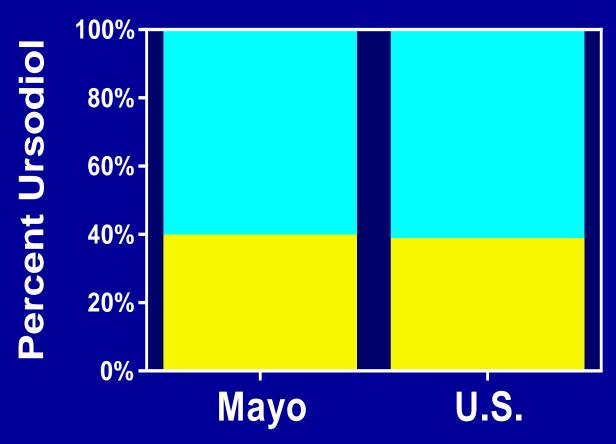
- 1970's Gall stone dissolution
 - Solubilizes cholesterol from GS surface
- Converts supersaturated bile to unsaturated bile
 - Enhances transport capacity of bile for cholesterol
- Promotes liquid crystal metaphase of phospholipids and cholesterol
 - Aids dissolution even if bile is supersaturated
- ?decrease biliary pain if mild??


Effects of Urso

- UDCA in PBC beneficial
 - stimulates biliary secretion of bile acids
 - Stimulates transporter proteins (post transl)
- In cholestatic liver diseases hydrophobic bile acids accumulate in hepatocytes
 - Cell damage, apoptosis and necrosis
- Urso cytoprotective (hydrophilic)
- ? anti-apoptotic in vitro studies
- ? Immunomodulatory activate GR, anti IFN-γ
- ? Chemopreventative colon cancer

Effects of Urso

- Chemopreventative colon cancer
 - Decreased prevalence of neoplasia after median
 50 and 42 months urso
 - 39% reduction in recurrence of adenomas with high-grade dysplasia
 - No difference in total adenoma recurrence
 - How long??/


Entero-hepatic circulation

1º bile acids CDCA cholic acid 2º bile acids DCA LCA

Urso 3%

URSODIOL ENRICHMENT

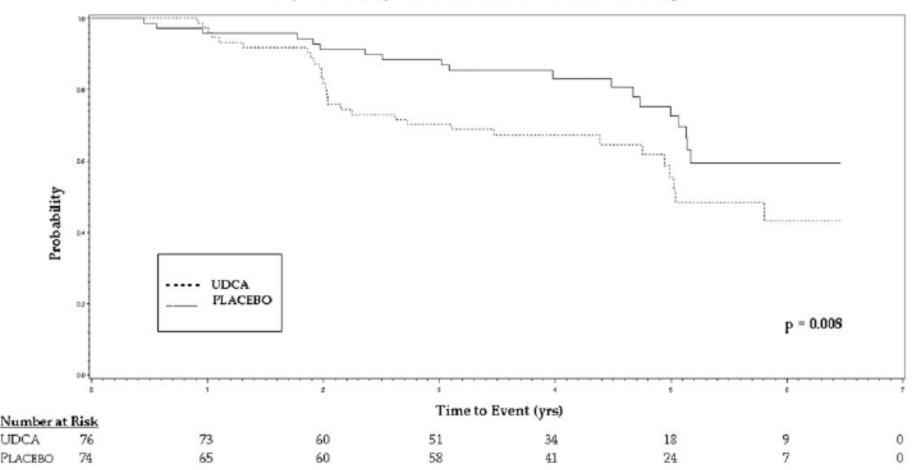
Lindor; Combes

Trials of urso for PSC

Inconclusive benefit	YES	NO	
 Symptoms 	2/9	7/9	
• LFT's	11/12	1/12	
 Histology 	3/7	4/7	
 Outcome 	2/5	3/5	

Doses 10-30 mg/Kg

Table 1 Trials of UDCA in PSC					
Reference	Type of study	No. of patients	Dose of UDCA	Duration (months)	Outcomes
Chazouillères et al. ⁴⁴	Prospective	15	750-1250 mg	6	Improved liver function and symptoms
O'Brien et al. ⁴⁵	Open-label	12	10 mg/kg	30	Improved liver function and symptoms
Beuers et al. ⁴³	Double-blind, placebo-controlled	6	13-15 mg/kg	12	Improved liver function and histology. No effect on symptoms
Lo et al. ¹⁷⁵	Double-blind placebo controlled	23	10 mg/kg	24	Improved liver function. No effect on symptoms or histology
Stiehl <i>et al.</i> ¹⁷⁶	Double-blind, placebo-controlled	20	750 mg	12-48	Improved liver function and histology. No effect on symptoms
De Maria et al. ¹⁷⁷	Double-blind placebo controlled	59	600 mg	24	No improvement in liver function
Lindor ⁴⁷	Double-blind, placebo-controlled	105	13-15 mg/kg	34	Improved liver function. No effect on histology and symptoms


Van Hoogstraten et al. ¹⁷⁸	Double-blind	48	10 mg/kg	24	Improved liver function. No effect on symptoms
Mitchell et al. ⁴⁹	Double-blind, placebo-controlled	26	20-25 mg/kg	24	Improved liver function, histology and cholangiography. No effect on symptoms. No survival benefit
Harnois et al. ¹⁷⁹	Open label	30	25-30 mg/kg	12	Improved liver function and survival compared with Mayo risk score
Okolicsanyi et al. ¹⁸⁰	Open-label, placebo-controlled	86	8-13 mg/kg	120	Improved liver function and symptoms. No effect on histology
Olsson et al. ⁵⁰	Multi-centre randomised Double-blind, placebo-controlled	219	17-23 mg/kg	60	Improved liver function. Nonsignificant trend towards increased survival. No effect on symptoms
Cullen et al. ⁵¹	Pilot dose range study	30	10 mg/kg 20 mg/kg 30 mg/kg	24	Improved projected survival with low and standard dose. Significantly improved projected survival with high dose
Lindor et al. ⁴⁸	Multi-centre Double-blind, placebo-controlled	150	28-30 mg/kg	60	Improved liver function. No improvement in symptoms or histology. Discontinued early (6 years): significantly risk of death, need for liver transplant or development of varicies

High dose Urso for PBC

- UDCA (n=76) placebo (n=74) groups: randomized, double-blind controlled trial of high-dose UDCA (28–30 mg/kg/day) for 5 y
- Similar in gender, age, duration of disease, inflammation, liver histology and Mayo risk score.
- DSMB stopped at 75% enrollment (31 (21%) reached 5 y)
- During therapy, AST and AP levels decreased more in the UDCA than the placebo group (p<0.01)
- Not associated with decreased endpoints: development of cirrhosis, varices, cholangiocarcinoma, liver transplantation or death
- 30 patients in the UDCA group (39%) versus 19 patients in the placebo group (26%) had reached one of the pre-established clinical endpoints.
- The risk of a primary endpoint was 2.3 times greater for patients on UDCA than for those on placebo (p<0.01)
- Risk 2.1 times greater for death, transplantation, or minimal listing criteria (p=0.038).
- Serious adverse events were more common in the UDCA than placebo group (63% vs 37%: p<0.01).

Model of All Primary Endpoints

Adjusted for Mayo Risk Score, Presence of Varices, and Stage

Conclusion

- Long-term high-dose UDCA therapy is associated with
 - improvement in serum liver tests in PSC
 - but does not improve survival
 - is associated with higher rates of serious adverse events.
- "Any dose" urso improves LFT's but little else
 - No effect on symptoms, histology or survival